黄连碱调节UCP1基因表达改善肥胖的分子机制研究

王秋惠, 徐星科, 汪夏, 殷菲, 王远强, 刘建辉

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (21) : 1712-1721.

PDF(5606 KB)
PDF(5606 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (21) : 1712-1721. DOI: 10.11669/cpj.2021.21.003
论著

黄连碱调节UCP1基因表达改善肥胖的分子机制研究

  • 王秋惠a,b, 徐星科a,b, 汪夏b, 殷菲a,b, 王远强a,b, 刘建辉a,b*
作者信息 +

Coptisine Regulates the Expression of UCP1 Gene to Ameliorate Obesity and Its Associated Molecular Mechanisms

  • WANG Qiu-huia,b, XU Xing-kea,b, WANG Xiab, YIN Feia,b, WANG Yuan-qianga,b, LIU Jian-huia,b*
Author information +
文章历史 +

摘要

目的 考察黄连碱对解偶联蛋白1(UCP1)基因启动子核苷酸片段形成的G-四链体(G-quadruplex)及其表达的影响。方法 通过紫外扫描、荧光光谱、圆二色谱、非变性凝胶电泳和分子对接等方法考察黄连碱与UCP1基因启动子核苷酸片段形成的G-四链体的相互作用。双荧光素酶报告基因实验考察黄连碱对UCP1启动子活性的影响。qRT-PCR和免疫印迹实验考察黄连碱对分化成熟的3T3-L1脂肪细胞中UCP1 mRNA和蛋白表达的影响。油红染色观察黄连碱对分化成熟的3T3-L1脂肪细胞中脂滴积累的影响。结果 紫外扫描、荧光光谱、圆二色谱、非变性凝胶电泳和分子对接等方法证实,黄连碱与UCP1基因启动子核苷酸片段形成的G-四链体存在相互作用,可促进其构型改变。双荧光素酶报告基因分析结果显示,黄连碱可直接影响UCP1启动子活性。qRT-PCR和免疫印迹实验证实,黄连碱可时间和剂量依赖地上调分化成熟的3T3-L1脂肪细胞中UCP1表达,抑制脂滴的形成。结论 黄连碱可能通过影响UCP1基因启动子核苷酸片段形成的G-四链体构型调节其表达,具有诱导白色脂肪棕色化的潜力,在肥胖的防治中有一定的应用开发价值。

Abstract

OBJECTIVE To explore the effects of coptisine on the stablity of G-quadruplex formed by the oligonucleotide of UCP1 gene promoter and the expression of UCP1 in the differentiated 3T3-L1 adipocytes. METHODS The interaction between the oligonucleotide of UCP1 gene promoter and coptisine was detected by UV, fluorescence, circular dichroism spectrum, native polyacrylamide gel electrophoresis and molecular docking. The effect of coptisine on the activity of UCP1 gene promoter was measured by dual-luciferase reporter gene assay. The expression levels of UCP1 mRNA and protein in differentiated 3T3-L1 adipocytes were detected by qRT-PCR and Western blot respectively. The accumulation of lipid droplets in differentiated 3T3-L1 adipocytes was observed by oil red staining. RESULTES The results from the scanning characterization of UV, fluorescence, and circular dichroism, native polyacrylamide gel electrophoresis, and molecular docking indicated that coptisine could interact with the G-quadruplex formed by the oligonucleotide of UCP1 gene promoter, and induced the transformation of G-quadruplex from intra-molecular to inter-molecular. Data from dual-luciferase reporter gene assay revealed that coptisine enhanced the transcriptional activity of UCP1 gene promoter in HEK293 cells. qRT-PCR and Western blot assay confirmed that coptisine dose- and time-dependently induced the expression of UCP1 gene in the differentiated 3T3-L1 adipocytes. Moreover, coptisine also attenuated the accumulation of lipid droplets in the differentiated 3T3-L1 adipocytes in a dose-dependent manner. CONCLUSION Coptisine could affect the stability of G-quadruplex formed by the oligonucleotide of UCP-1 gene promoter, potentiate the expression of UCP-1 and reduce the accumulation of lipid droplets in the differentiated 3T3 adipocytes, suggesting that coptisine might be a promising lead compound for the prevention and treatment of obesity.

关键词

黄连碱 / 解偶联蛋白1 / 肥胖 / G-四链体

Key words

coptisine / uncoupling protein 1 / obesity / g-quadruplex

引用本文

导出引用
王秋惠, 徐星科, 汪夏, 殷菲, 王远强, 刘建辉. 黄连碱调节UCP1基因表达改善肥胖的分子机制研究[J]. 中国药学杂志, 2021, 56(21): 1712-1721 https://doi.org/10.11669/cpj.2021.21.003
WANG Qiu-hui, XU Xing-ke, WANG Xia, YIN Fei, WANG Yuan-qiang, LIU Jian-hui. Coptisine Regulates the Expression of UCP1 Gene to Ameliorate Obesity and Its Associated Molecular Mechanisms[J]. Chinese Pharmaceutical Journal, 2021, 56(21): 1712-1721 https://doi.org/10.11669/cpj.2021.21.003
中图分类号: R966   

参考文献

[1] RAMAGE L E, AKYOL M, FLETCHER A M, et al. Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation[J]. Cell Metab, 2016, 24(1): 130-141.
[2] GOLOZOUBOVA V, HOHTOLA E, MATTHIAS A, et al. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold[J]. FASEB J, 2001, 15(11): 2048-2050.
[3] NEDERGAARD J, GOLOZOUBOVA V, MATTHIAS A, et al. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency[J]. Biochim Biophys Acta, 2001, 1504(1): 82-106.
[4] SEN D AND GILBERT W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis[J]. Nature, 1988, 334(6180): 364-366.
[5] OGANESIAN L, MOON I K, BRYAN T M, et al. Extension of G-quadruplex DNA by ciliate telomerase[J]. EMBO J, 2006, 25(5): 1148-1159.
[6] SIDDIQUI-JAIN A, GRAND C L, BEARSS D J, et al. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription[J]. Proc Natl Acad Sci USA, 2002, 99(18): 11593-11598.
[7] HUPPERT J L. Four-stranded DNA: cancer, gene regulation and drug development[J]. Philos Trans A Math Phys Eng Sci, 2007, 365(1861): 2969-2984.
[8] ZHANG Z H, DENG A J, YU J Q, et al. Advance in studies on pharmacological activity of coptisine hydrochloride[J]. China J Chin Mater Med(中国中药杂志),2013, 38(17): 2750-2754.
[9] QIU Y P. A review on Huanlian[J]. Clin J Chin Med (中医临床研究),2018, 10(22): 141-143.
[10] XIA S, ZOU Z, Y., HU M R, et al. Antiobesity Effect of Coptisine on Syrian Golden Hamsters[J]. Asia Pac Tradit Med (亚太传统医药),2015(15): 12-14.
[11] MA H, HU Y R, ZOU Z Y, et al. Preliminary evaluation of antihyperglycemic effect of Rhizoma Coptidis alkaoids and their structure-activity relationships[J]. Chin Pharmacol Bull (中国药理学通报),2015, 31(11): 1575-1579.
[12] WANG H, GAO X, FANG J, et al. Multiple Staggered Mesh Ewald: Boosting the Accuracy of the Smooth Particle Mesh Ewald Method[J]. J Chem Theor, 2016, 12(11): 5596-5608.
[13] WANG J AND HOU T. Develop and test a solvent accessible surface area-based model in conformational entropy calculations[J]. J Chem Inf Model, 2012, 52(5): 1199-1212.
[14] KOLLMAN P A, MASSOVA I, REYES C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models[J]. Acc Chem Res, 2000, 33(12): 889-897.
[15] HUANG Q, WANG W P, ZHONG W Y, et al. The reasearch method for drug-DNA interaction[J]. Cent South Pharm(中南药学),2004, 2(6): 354-357.
[16] WHITE E W, TANIOUS F, ISMAIL M A, et al. Structure-specific recognition of quadruplex DNA by organic cations: influence of shape, substituents and charge[J]. Biophys Chem, 2007, 126(1-3): 140-153.
[17] RAGUSEO F, CHOWDHURY S, MINARD A, et al. Chemical-biology approaches to probe DNA and RNA G-quadruplex structures in the genome[J]. Chem Commun (Camb), 2020, 56(9): 1317-1324.
[18] PARAMASIVAN S, RUJAN I, AND BOLTON P H. Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding[J]. Methods, 2007, 43(4): 324-331.
[19] PORTER R K. A new look at UCP-1[J]. Biochim Biophys Acta, 2006, 1757(5-6): 446-448.
[20] BREEN E P, GOUIN S G, MURPHY A F, et al. On the mechanism of mitochondrial uncoupling protein 1 function[J]. J Biol Chem, 2006, 281(4): 2114-2119.
[21] BARGUT T C L, SOUZA-MELLO V, AGUILA M B, et al. Browning of white adipose tissue: lessons from experimental models[J]. Horm Mol Biol Clin Investig, 2017, 31(1): 1-13.
[22] CUI X B and CHEN S Y. White adipose tissue browning and obesity[J]. J Biomed Res, 2016, 31(1): 1-2.
[23] RO S H, JANG Y, BAE J, et al. Autophagy in adipocyte browning: emerging drug target for intervention in obesity[J]. Front Physiol, 2019,10: 1-11. DOI: 10.3389/fphys.2019.00022
[24] CHENG Y, MENG Q, WANG C, et al. Leucine deprivation decreases fat mass by stimulation of lipolysis in white adipose tissue and upregulation of uncoupling protein 1 (UCP1) in brown adipose tissue[J]. Diabetes, 2010, 59(1): 17-25.
[25] MILLS E L, PIERCE K A, JEDRYCHOWSKI M P, et al. Accumulation of succinate controls activation of adipose tissue thermogenesis[J]. Nature, 2018, 560(7716): 102-106.
[26] HARA H, TAKAHASHI H, MOHRI S, et al. beta-Cryptoxanthin Induces UCP-1 Expression via a RAR Pathway in Adipose Tissue[J]. J Agric Food Chem, 2019, 67(38): 10595-10603.
[27] KAGAWA Y, OZAKI-MASUZAWA Y, HOSONO T, et al. Garlic oil suppresses high-fat diet induced obesity in rats through the upregulation of UCP-1 and the enhancement of energy expenditure[J]. Exp Ther Med, 2020, 19(2): 1536-1540.
[28] HANSEL-HERTSCH R, BERALDI D, LENSING S V, et al. G-quadruplex structures mark human regulatory chromatin[J]. Nat Genet, 2016, 48(10): 1267-1272.
[29] KWOK C K, MARSICO G, SAHAKYAN A B, et al. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome[J]. Nat Methods, 2016, 13(10): 841-844.
[30] LIU G, DU W, XU H, et al. RNA G-quadruplex regulates microRNA-26a biogenesis and function[J]. J Hepatol, 2020, 73(2): 371-382.
[31] HASLAM D W AND JAMES W P. Obesity[J]. Lancet, 2005, 366(9492): 1197-1209.
[32] CHOI J S, KIM J H, ALI M Y, et al. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-alpha and PPAR-gamma[J]. Fitoterapia, 2014, 98: 199-208.
[33] WANG N, WANG Q, AND FAN H. Study on improvement effects of the coptisine on the fatty liver disease of SD Rats and the Related Mechanism [J]. World Chin Med(世界中医药),2019, 14(1): 48-53.

基金

重庆市自然科学基金重点项目资助(2017jcyjB0077)
PDF(5606 KB)

188

Accesses

0

Citation

Detail

段落导航
相关文章

/